起订:1
发货:2天内
压电陶瓷物质组成
压电陶瓷的压电性压电陶瓷大的特性是具有压电性,包括正压电性和逆压电性。正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。在外力不太大的情况下,其电荷密度与外力成正比,遵循公式:其中,δ为面电荷密度,d为压电应变常数,T为伸缩应力。反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心发生相对位移而被极化,由此位移导致电介质发生形变,这种效应称之为逆压电性。当电场不是很强时形变与外电场呈线性关系,遵循公式:dt为逆压电应变常数,即d的转置矩阵,E为外加电场,x为应变。压电效应的强弱反映了晶体的弹性性能与介电性能之间的耦合程度,用机电耦合系数K表示,遵循公式:其中u12为压电能,u1为弹性能,u2为介电能。
压电陶瓷换能器简介
超声技术是一种广泛使用的无损检测技术,它以声学理论为基础,不断应用于电子、通信、医学、生物及物理领域。在现测技术中,利用超声技术研制的换能器以其灵敏度高、精度高等优点正在越来越受到人们的关注。检测过程中常用的换能器有: 压电式换能器、磁致伸缩换能器、电磁声换能器和激光换能器。常用的是压电换能器,它的部件就是压电晶片。压电晶片可以在压力的作用下发生形变,从而导致晶片本身发生极化,在晶片表面出现正负束缚电荷,此效应为压电效应。并且,压电效应具有可逆性,即对晶片施加电压后会发生形变。在检测过程中,利用超声探头的逆压电效应可以产生超声波,利用压电效应达到接收超声波的目的。压电陶瓷超声换能器很早就进入了人们的研究视野,它制作方便,可操控强,灵敏度高,机电耦合性好。基于压电陶瓷开发的换能器包括功率超声换能器和检测超声换能器。
压电陶瓷片工 艺
配料—混合磨细—预烧—二次磨细—造粒—成型—排塑—烧结成瓷—外形加工—被电极—高压极化—老化测试。一、配料:进行料前处理,除杂去潮,然后按配方比例称量各种原材料,注意少量的添加剂要放在大料的中间。二、混合磨细:目的是将各种原料混匀磨细,为预烧进行完全的固相反应准备条件。一般采取干磨或湿磨的方法。小批量可采取干磨,大批量可采取搅拌球磨或气流粉碎的方法,效率较高。三、预 烧:目的是在高温下,各原料进行固相反应,合成压电陶瓷。此道工序很重要。会直接影响烧结条件及终产品的性能。四、二次细磨:目的是将预烧过的压电陶瓷粉末再细振混匀磨细,为成瓷均匀性能一致打好基础。五、造粒:目的是使粉料形成高密度的流动性好的颗粒。六、成型:目的是将制好粒的料压结成所要求的预制尺寸的毛坯。七、排塑:目的是将制粒时加入的粘合剂从毛坯中除掉。八、烧结成瓷:将毛坯在高温下密封烧结成瓷。此环节相当重要。九、外形加工:将烧好的制品磨加工到所需要的成品尺寸。十、被电极:在要求的陶瓷表面设置上导电电极。一般方法有银层烧渗、化学沉积和真空镀膜。十一、高压极化:使陶瓷内部电畴定向排列,从而使陶瓷具有压电性能。十二、老化测试:陶瓷性能稳定后检测各项指标,看是否达到了预期的性能要求。
压电效应
压电效应产生的根源是晶体中离子电荷的位移,当不存在应变时电荷在晶格位置上分布是对称的,所以其内部电场为零。但当给晶体施加应力则电荷发生位移,如果电荷分布不在保持对称就会出现净极化,并将伴随产生一-个电场,这个电场就表现为压电效应。
压电陶瓷( piezelectric ceramics ),是指经直流高压极化后,具有压电效应的铁电陶瓷材料。晶体受到机械力的作用时,表面产生束缚电荷,其电荷密度大小与施加外力大小成线性关系,这种由机械效应转换成电效应的过程称为正压电效应(力→形变一电压)。晶体在受 到外电场激励下产生形变,且二者之间呈线性关系,这种由电效应转换成机械效应的过程称为逆压电效应(电压- +形变)。压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等